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Proof of Work

● Involves a prover and a verifier.
● A puzzle that is hard to solve. Lots of computational power 

is necessary.
● Easy to check.
● Originated in the 90s.
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Proof of Work
Verifier Prover

“Please solve this 
problem: problem”

“Will do!”

Uses a lot of 
computing power 
to solve problem

Uses a tiny amount of 
computing power to 
check answer

“I got it! Here’s 
the answer: 
answer”

“Nice job! You got it right!”
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What are Secure Hashes?

● Most hashes are fast to compute.
● Hard to find the input given the output. The only known method is guess and 

check.

13
(Input)

SHA 224
(Secure Hash 
Function)

'86730f0dd6381286d3b5f0dfb897ce4
895480ce97564c6be4f1543b8'
(Output)
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How are Hashes useful for Proof of Work?
● Alice tells Bob that she hashed a natural number less than or equal to 109. 

654,324,748 SHA 244
(Hash Function)

'0db905d9ea8d25b902a8edcc
6e15a7c3d7ab461213910a8c
625f0d03'

● Alice tells Bob the output.
● Bob will have to calculate an expected 500,000,000 hashes to find Alice’s 

input.
● Alice can check the Bob’s result almost instantly.
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Proof of Work

● Uses
○ Preventing spamming on email
○ Stopping double spending on Bitcoin

● Drawbacks
○ Solving proofs of work takes a tremendous amount of energy
○ Global Warming!!!
○ Special hardware can solve Proofs of Work quickly.

● Alternatives

○ Proof of Space!

6



Proof of Space
● Involves a prover and a verifier.
● Proving you have devoted space instead of computation 

time.
● Proofs of Space are only a few years old.
● Easy to check.
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Proof of Space
Verifier Prover

“Please store 
this data: data”

“Will do!”

Uses a lot of
disk space to
store data

Checks the proof from 
the prover using very little  
space

“Here is proof 
that I stored the 
data: proof”

“Good job!”
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Trivial Proof of Space

Alice                                                                                                                 BobAlice sends Bob a large file, F.

One week elapses

Bob returns the file F.

● Alice uses too much space
● Sending the file is impractical

(Verifier) (Prover)

9



Exploring Proof of Space with Hard-to-Pebble Graphs

● Not this Kind of Graph: ● This one:

● Graphs have vertices and edges.
● We’re interested in directed acyclic 

graphs.

A is a source. 
(No parents).

F is a sink. 
(No children).
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Computing Hashes on Graphs
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● We compute and store the value of a vertex by hashing its parents

A B C D

E = Hash(A, C) F = Hash(B, D) G = Hash(C, A) H = Hash(D, B)

I = Hash(E, F) J = Hash(F, E) K = Hash(G, H) L = Hash(H, G)



The Pebbling Game
● You can pebble a vertex only if all of its parents have been pebbled
● This means that the sources can be pebbled at any time
● Pebbling a vertex is storing the hash of its parents
● Removing a pebble is freeing that memory
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Playing the Game
Suppose we want 

to pebble this 
vertex here.

We can do it 
with four 
pebbles:

1

2

3

4

1 2

3

1 2

4

1

DONE!
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Hard-to-Pebble Graphs
Graphs are hard to pebble if you need many pebbles to pebble a vertex (high 
interconnectedness)

Not Very Hard to Pebble;
Low interconnectedness

(Few edges)

Harder to Pebble;
High interconnectedness

(Many edges)
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A PTC Graph
SOURCES SINKS

Image adapted from Nicolaos P. Karvelas’ master thesis, “Proofs of Secure Erasure”

Smaller PTC graphs

Butterfly
superconcentrators
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Paul, Tarjan, and Celoni proved that any pebbling strategy needs at least

pebbles, where    is some constant factor and     is the number of vertices in the 
graph.

The PTC Graph

Source: Wolfgang J. Paul, Robert E. Tarjan, James R. Celoni, “Space Bounds for a Game on Graphs.” In Ashok K. Chandra, Detlef Wotschke, Emily P. Friedman, 
and Michael A. Harrison, editors, STOC, pages 149–160. ACM, 1976. 16
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Naive Prover/Verifier Interface

● V gives P:
○ Parameters for generating the PTC graph
○ Values for the sources of the graph

● Both P and V compute the values of all the vertices in the graph
● V asks P for her values for each vertex and checks them against his own
● If they are all good, then P passes, otherwise P fails
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Downside to Naive Interface
● Sending over every single vertex is very inefficient
● Many applications require efficient and quick verification (similar to Proof of 

Work)

How can we construct an efficient verifying scheme?
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Merkle Tree

x1

h1 = h(x1)

x2

h2 = h(x2)

x3

h3 = h(x3)

x4

h4 = h(x4)

h5 = h(h1, h2) h6 = h(h3, h4)

h7 = h(h5, h6)
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Not that kind of tree!



Using Merkle Trees
P can now distill the values of all of her nodes down to the Merkle root 

To check the value of a particular node, V will ask P to “open” the node under the 
Merkle root
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Opening a Node

To open
this node...

...P sends 
all of these

When V checks, 
he uses the 

values sent by P 
to calculate 

these nodes:

Then V checks 
the calculated 

Merkle root 
against    s

Match?

Successful opening; move 
on to next challenge

Unsuccessful opening; 
abort, prover fails

YES

NO
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Opening a Node
● But how does V verify the root itself?
● V will open sources, and make sure that they match the small number of initial 

values that he sent over
● It turns out that you can prove that P only needs to open a small number of 

nodes in order for V to be convinced that P is sufficiently honest
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Efficient Pebbling
Why do we even care about efficiency?

● Important to figure out most optimal strategy
● Otherwise, those who do have unfair advantage
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Efficient Pebbling: A Space/Time Tradeoff
Naive method: start by pebbling the sources, then the next layer, then the next 
layer, etc.

This is fast but space-inefficient because we never remove unnecessary pebbles, 
so we end up having to store the value of every single vertex the entire time

What if every time we pebble the next layer of the graph we remove the pebbles of 
the previous layer?

It turns out this algorithm is indeed better in terms of storage.
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● Using Merkle trees for efficient verification by checking root consistency

● Efficient pebbling algorithms

● Hard-to-pebble graphs, specifically the PTC graph and the            bound

Summary
To recap, we talked about:

● Proof of Work and its problems… so we turn to Proof of Space
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Current and Future Work
● Investigating the performance of other pebbling algorithms (e.g. depth-first 

pebbling)
● Building better hard-to-pebble graphs based on so-called “linear 

superconcentrators,” as opposed to the butterfly superconcentrators used in 
the PTC graph

● Build a consensus protocol (similar to Bitcoin) but with proof of space instead 
of proof of work
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Thank You!
We would like to thank our mentors, Ling Ren and Albert Kwon, for their support 
and guidance.  Without them and their expertise this project would not have been 
possible.

We also want to thank PRIMES for this wonderful opportunity, and you all for 
being such a great audience.
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QUESTIONS?
SOURCES SINKS
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