
Exploring Proof of Space
with Hard-to-Pebble Graphs

Vivek Bhupatiraju, John Kuszmaul, Vinjai Vale
Mentors: Ling Ren, Albert Kwon

1

Proof of Work

● Involves a prover and a verifier.
● A puzzle that is hard to solve. Lots of computational power

is necessary.
● Easy to check.
● Originated in the 90s.

2

Proof of Work
Verifier Prover

“Please solve this
problem: problem”

“Will do!”

Uses a lot of
computing power
to solve problem

Uses a tiny amount of
computing power to
check answer

“I got it! Here’s
the answer:
answer”

“Nice job! You got it right!”
3

What are Secure Hashes?

● Most hashes are fast to compute.
● Hard to find the input given the output. The only known method is guess and

check.

13
(Input)

SHA 224
(Secure Hash
Function)

'86730f0dd6381286d3b5f0dfb897ce4
895480ce97564c6be4f1543b8'
(Output)

4

How are Hashes useful for Proof of Work?
● Alice tells Bob that she hashed a natural number less than or equal to 109.

654,324,748 SHA 244
(Hash Function)

'0db905d9ea8d25b902a8edcc
6e15a7c3d7ab461213910a8c
625f0d03'

● Alice tells Bob the output.
● Bob will have to calculate an expected 500,000,000 hashes to find Alice’s

input.
● Alice can check the Bob’s result almost instantly.

5

Proof of Work

● Uses
○ Preventing spamming on email
○ Stopping double spending on Bitcoin

● Drawbacks
○ Solving proofs of work takes a tremendous amount of energy
○ Global Warming!!!
○ Special hardware can solve Proofs of Work quickly.

● Alternatives

○ Proof of Space!

6

Proof of Space
● Involves a prover and a verifier.
● Proving you have devoted space instead of computation

time.
● Proofs of Space are only a few years old.
● Easy to check.

7

Proof of Space
Verifier Prover

“Please store
this data: data”

“Will do!”

Uses a lot of
disk space to
store data

Checks the proof from
the prover using very little
space

“Here is proof
that I stored the
data: proof”

“Good job!”
8

Trivial Proof of Space

Alice BobAlice sends Bob a large file, F.

One week elapses

Bob returns the file F.

● Alice uses too much space
● Sending the file is impractical

(Verifier) (Prover)

9

Exploring Proof of Space with Hard-to-Pebble Graphs

● Not this Kind of Graph: ● This one:

● Graphs have vertices and edges.
● We’re interested in directed acyclic

graphs.

A is a source.
(No parents).

F is a sink.
(No children).

10

Computing Hashes on Graphs

11

● We compute and store the value of a vertex by hashing its parents

A B C D

E = Hash(A, C) F = Hash(B, D) G = Hash(C, A) H = Hash(D, B)

I = Hash(E, F) J = Hash(F, E) K = Hash(G, H) L = Hash(H, G)

The Pebbling Game
● You can pebble a vertex only if all of its parents have been pebbled
● This means that the sources can be pebbled at any time
● Pebbling a vertex is storing the hash of its parents
● Removing a pebble is freeing that memory

12

Playing the Game
Suppose we want

to pebble this
vertex here.

We can do it
with four
pebbles:

1

2

3

4

1 2

3

1 2

4

1

DONE!

13

Hard-to-Pebble Graphs
Graphs are hard to pebble if you need many pebbles to pebble a vertex (high
interconnectedness)

Not Very Hard to Pebble;
Low interconnectedness

(Few edges)

Harder to Pebble;
High interconnectedness

(Many edges)
14

A PTC Graph
SOURCES SINKS

Image adapted from Nicolaos P. Karvelas’ master thesis, “Proofs of Secure Erasure”

Smaller PTC graphs

Butterfly
superconcentrators

15

Paul, Tarjan, and Celoni proved that any pebbling strategy needs at least

pebbles, where is some constant factor and is the number of vertices in the
graph.

The PTC Graph

Source: Wolfgang J. Paul, Robert E. Tarjan, James R. Celoni, “Space Bounds for a Game on Graphs.” In Ashok K. Chandra, Detlef Wotschke, Emily P. Friedman,
and Michael A. Harrison, editors, STOC, pages 149–160. ACM, 1976. 16

n

Naive Prover/Verifier Interface

● V gives P:
○ Parameters for generating the PTC graph
○ Values for the sources of the graph

● Both P and V compute the values of all the vertices in the graph
● V asks P for her values for each vertex and checks them against his own
● If they are all good, then P passes, otherwise P fails

17

Downside to Naive Interface
● Sending over every single vertex is very inefficient
● Many applications require efficient and quick verification (similar to Proof of

Work)

How can we construct an efficient verifying scheme?

18

Merkle Tree

x1

h1 = h(x1)

x2

h2 = h(x2)

x3

h3 = h(x3)

x4

h4 = h(x4)

h5 = h(h1, h2) h6 = h(h3, h4)

h7 = h(h5, h6)

19

Not that kind of tree!

Using Merkle Trees
P can now distill the values of all of her nodes down to the Merkle root

To check the value of a particular node, V will ask P to “open” the node under the
Merkle root

20

Opening a Node

To open
this node...

...P sends
all of these

When V checks,
he uses the

values sent by P
to calculate

these nodes:

Then V checks
the calculated

Merkle root
against s

Match?

Successful opening; move
on to next challenge

Unsuccessful opening;
abort, prover fails

YES

NO

21

Opening a Node
● But how does V verify the root itself?
● V will open sources, and make sure that they match the small number of initial

values that he sent over
● It turns out that you can prove that P only needs to open a small number of

nodes in order for V to be convinced that P is sufficiently honest

22

Efficient Pebbling
Why do we even care about efficiency?

● Important to figure out most optimal strategy
● Otherwise, those who do have unfair advantage

23

Efficient Pebbling: A Space/Time Tradeoff
Naive method: start by pebbling the sources, then the next layer, then the next
layer, etc.

This is fast but space-inefficient because we never remove unnecessary pebbles,
so we end up having to store the value of every single vertex the entire time

What if every time we pebble the next layer of the graph we remove the pebbles of
the previous layer?

It turns out this algorithm is indeed better in terms of storage.

24

● Using Merkle trees for efficient verification by checking root consistency

● Efficient pebbling algorithms

● Hard-to-pebble graphs, specifically the PTC graph and the bound

Summary
To recap, we talked about:

● Proof of Work and its problems… so we turn to Proof of Space

25

Current and Future Work
● Investigating the performance of other pebbling algorithms (e.g. depth-first

pebbling)
● Building better hard-to-pebble graphs based on so-called “linear

superconcentrators,” as opposed to the butterfly superconcentrators used in
the PTC graph

● Build a consensus protocol (similar to Bitcoin) but with proof of space instead
of proof of work

26

Thank You!
We would like to thank our mentors, Ling Ren and Albert Kwon, for their support
and guidance. Without them and their expertise this project would not have been
possible.

We also want to thank PRIMES for this wonderful opportunity, and you all for
being such a great audience.

27

QUESTIONS?
SOURCES SINKS

28

References
1. Wolfgang J. Paul, Robert E. Tarjan, James R. Celoni, “Space Bounds for a

Game on Graphs.” In Ashok K. Chandra, Detlef Wotschke, Emily P.
Friedman, and Michael A. Harrison, editors, STOC, pages 149–160. ACM,
1976.

2. Nikolaos P. Karvelas Master’s Thesis, “Proofs of Secure Erasure.”
3. Stefan Dziembowski, Sebastian Faust, Vladimir Kolmogorov, Krzysztof

Pietrzak, “Proofs of Space,” 2013.

29

